Inversion of stellar fundamental parameters from Espadons-Narval high-resolution spectra

Frédéric Paletou, Victor Watson, Jean-François Trouilhet

Université Paul Sabatier, Toulouse III Observatoire Midi-Pyrénées – IRAP irap.omp.eu

- Sources and characteristics of the data
- A PCA-based inversion method
- First results and discussion

Stellar classification

 \rightarrow The Hertzsprung–Russell diagram.

Sources of data

- Espadons-Narval database (polarbase.irap.omp.eu)
 - $\,\mathcal{R}\sim65\,000$; spectral coverage \sim 380-1000 nm
 - 180 000 independent spectra, for 2 000 distinct targets
 - Covers quite well the H-R diagram
 - see Petit et al. (2014) for a more complete description
- Elodie Spectral Library (Prugniel et al. 2007)
 - Observed spectra for the training database
 - $\mathcal{R} \sim 48\,000$; spectral coverage \sim 390-680 nm
 - 905 spectra selected for FGK stars
- Projected rotational velocities (vsini)
 - Taken from Vizier@CDS III/244 (Głebocki & Gnaciński 2005)
- Harvesting data: see e.g., Paletou & Zolotukhin (2014) [arXiv:1408.7026]

The training database

 $\rightarrow\,$ Graphical summary of the coverage in stellar parameters corresponding to the content of our Elodie spectra training database (for FGK stars).

PCA reduction of dimensionality

• Variance-covariance matrix ({*S_i*}: training database)

$$\mathbf{C}_{(N_{\lambda};N_{\lambda})} = (\mathbf{S} - \bar{S})^{T} \cdot (\mathbf{S} - \bar{S}) \; ; \; N_{\lambda} = 8000 \tag{1}$$

Knowing its eigenvectors *e*_k (k ≤ k_{max}) allows for the computation of projection coefficients:

$$p_{jk} = (\vec{S}_j - \vec{S}) \cdot \vec{e}_k \tag{2}$$

• Reduction of dimensionality

- Each spectra of N_{λ} (8000) points will be described by "just" k_{max} ($\ll N_{\lambda}$) projection coefficients
- How many orders k_{max} to keep?

Reduction of dimensionality

→ Reconstruction error $E(k_{\max}) = \left\langle \left(\frac{|\bar{S} + \sum_{k=1}^{k_{\max}} p_{jk} \vec{e}_k - S_j|}{S_j} \right) \right\rangle$ as a function of the number of eigenvectors used for the computation of the projection coefficients p.

Inversion of stellar parameters

- Nearest neighbour(s) search
- Observed spectra: $\vec{O}(\lambda)$
- Projected on k_{max} eigenvectors: $\varrho_k = (\vec{O} \vec{S}) \cdot \vec{e}_k$
- Compute squared (euclidian) distances:

$$d_{j}^{(O)} = \sum_{k=1}^{k_{\max}} (\varrho_{k} - \rho_{jk})^{2}$$
(3)

• Consider neighbours in domain:

$$\min\left(d_j^{(O)}\right) \le d_j^{(O)} \le 1.2 \times \min\left(d_j^{(O)}\right) \tag{4}$$

• Simple mean of every stellar parameters of the identified neighbours \rightarrow (T_{eff}; logg; [Fe/H]; vsini)

Which spectral domain(s)?

 \rightarrow We chose to test our approach at the vicinity of the Mg I b triplet (known to be logg sensitive).

AstroStat2014@Grenoble

Inverting S^4N data

 \rightarrow First tests by inverting data from the S⁴N survey (Allende Prieto et al. 2004).

Inverting PolarBase data

• A selection of **140 spectra (of FGK stars)** in common with the "Spectroscopic Properties of Cool Stars" data collection (Valenti & Fischer 2005)

Parameter	$T_{ m eff}$	logg	[Fe/H]	vsin <i>i</i>
bias	23	0.10	0.02	-0.04
σ	115	0.19	0.10	1.68

- Advantages of working with observed spectra
 - Object to objects relation!
 - Independent from whatever method of determination of stellar parameters have been used for the reference spectra
 - One may **also** invert any other parameter contributing to the spectral signature of the star

10 / 11

Conclusion

- PCA is simple to implement
- It leads to a fast and robust inversion method
- Very encouraging results with Espadons and Narval spectra: further details in *Paletou et al. 2014 (A&A, in press)*
- Future work is...
 - Use (also) synthetic spectra, for spectral domains not covered by Elodie like e.g., the RVS@GAIA Ca II Infra-Red Triplet domain
 - Combine inversion results from several spectral domains
 - Extend the range of application to A-FGK-M spectral types
 - Implement at polarbase.irap.omp.eu

- ...