UחED

Inferring the Spatial

Olivares, J.

Methodology
Mock Data
Real Data
Mode!
Selection
Discussion

Inferring the Spatial Structure of the Pleiades A Bayesian approach

Olivares, J.
Sarro, L. M., Moraux, E. Bouy, H., Berihuete, A.
~
ETS Ingeniería Informática
UNED, Madrid
Fost, IPAG, Grenoble

November 2014

Motivation

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

■ Learn statistics

- Spatial structure per se

■ Will be used to infer membership probabilities.

Methodology

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data

Real Data

Model
Selection
Discussion

1 Analyse the data.
2 Select a priori the model(s) according to data.
3 Construct a probabilistic framework for the model.
4 Use Bayes theorem and MCMC to:

- Check accuracy and precision with mock data.
- Obtain the posterior for the parameters.

5 Analyse the posteriors.

DANCe Data

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

KPNO/Mosaic1 UKIIRT/WFFGAM Subaru/SuprimeCam CFHT/CFHT12K
INT/WFC CFHT/UHBK KPNO/NEWFIRM GTO/MOSAMC2 GFHT/MMegacam

Data from Sarro et al. 2014

UחED

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data

Real Data

Mode!
Selection
Discussion

Table: Number of stars at different $R_{\text {max }}$

1°	2°	3°	4°	5°	6°
496	1028	1354	1576	1735	1805

Table 4: True positive rates and contamination rates for different values of the membership threshold. The uncertainty intervals correspond to the range of values (maximum-minimum) observed in the five random samples.

$p_{\text {min }}$	0.50	0.7	0.8	0.90	0.95	0.96	0.97	0.98	0.99	0.9975
TPR (\%)	98.4 ± 0.5	97.1 ± 0.7	96.0 ± 0.9	92.9 ± 1.5	88.0 ± 2.8	85.9 ± 3.0	82.6 ± 3.2	76.7 ± 4.9	63.8 ± 7.7	36.3 ± 7.7
CR (\%)	11.0 ± 2.0	8.0 ± 1.5	6.6 ± 1.3	4.5 ± 1.1	2.9 ± 0.5	2.6 ± 0.6	2.1 ± 0.5	1.6 ± 0.3	1.1 ± 0.3	0.4 ± 0.4

Data from Sarro et al. 2014: λ parameter

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Fig. 2: Principal curve fits to the initial reference set (blue line) and to the subset of sources with all magnitudes fainter than its closest point in the first principal curve (green line). This subset of points is represented in red.

Figure 1. (a) The lhear regression line minimizes the sum of squared deviabons in the response variable. (b) The pincoipal-camponent ine minimizes the sum of squared deviaions in af of the variables. (c) The smocth regression cuvve minimizes the sum of squared deviations in the mininizes the sum af squared devations in al of the variables. (c) The smocth regression cuve mimizes the sum of squared deviations in the
response variable, subject to smoothness constraints. (d). The principal curve minimizes the sum of squared deviabions in al of the variables, subject to smoothness constraints.

Hastie \& Stuetzle, 1989

Probabilistic Framework

Inferring the Spatial Structure of the Pleiades

Olivares, J.

Methodology
Mock Data
Real Data
Mode!
Selection
Discussion

Bayes theorem.

$$
p(\theta \mid D, I)=\frac{p(D \mid \theta, I) p(\theta \mid I)}{p(D \mid I)}
$$

Evidence,

$$
p(D \mid I)=Z=\int P(D \mid \theta, I) P(\theta \mid I) d \theta
$$

The generative model, $p(D \mid \theta, I)$, is a pdf.

$$
\begin{equation*}
\int p(D \mid \theta, I) d D=1 . \tag{1}
\end{equation*}
$$

"I will say that you have a generative model of data point n if you can write down or calculate a pdf $p\left(D_{n} \mid \theta, I\right)$ for the measurement D_{n}, conditional on a vector or list θ of parameters and a (possibly large) number of other things I (prior information) on which the D_{n} pdf depends, such as assumptions, or approximations, or knowledge about the noise process, or so on." Hogg 2012.

Number Density Profiles

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data

Real Data

Mode!
Selection
Discussion

We used the classical surface density families of models:

$$
\begin{gathered}
\text { King }=S_{c}\left(\frac{1}{\sqrt{1+\frac{r^{2}}{r_{c}^{2}}}}-\frac{1}{\sqrt{1+\frac{r_{t}^{2}}{r_{c}^{2}}}}\right)^{2} \\
\text { Plummer }=S_{c}\left(1+\frac{r^{2}}{r_{c}^{2}}\right)^{-2},
\end{gathered}
$$

modified by:
■ Field density S_{f} as a Contamination ratio

$$
C r=\frac{\pi R_{\max }^{2} S_{f}}{N}
$$

- r_{c} as a linear function of Sarro's et al. (2014) λ,

$$
r_{c}=r_{c 0}+r_{c 1} \lambda
$$

Generative Model. Example of Plummer profile UnED

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data

Real Data

Model
Selection
Discussion

$$
\begin{aligned}
p\left(r \mid r_{c}\right) & =\frac{d N(r)}{N_{t o t}} \frac{1}{d r} \\
& =\frac{2 \pi S_{0} r\left(1+\frac{r^{2}}{r_{c}^{2}}\right)^{-2} d r}{\pi S_{0} r_{c}^{2}} \frac{1}{d r} \\
& =2 \frac{r}{r_{c}^{2}}\left(1+\frac{r^{2}}{r_{c}^{2}}\right)^{-2} .
\end{aligned}
$$

If data are truncated, as in our case, the pdf in the interval $\left(0, R_{\max }\right)$ is

$$
p\left(r \mid r_{c}\right)=2 \frac{r}{R_{\max }^{2}} \frac{\left(1+\frac{R_{\max }^{2}}{r_{c}^{2}}\right)}{\left(1+\frac{r^{2}}{r_{c}^{2}}\right)^{2}} .
$$

Sampling the Posterior

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data

Real Data

Model
Selection
Discussion

■ MCMC Sampler: Stan (mc-stan.org, Hoffman-Gelman, 2011).

- Convergence, R-hat criterion (Gelman \& Rubin, 1992).

Trace of rco

Mock Data: Plummer v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Accuracy

Core Radius Intercept

Precision

Mock Data: Plummer v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection

Discussion

Accuracy

Core Radius Slope

Precision

Mock Data: Plummer v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data

Real Data

Model
Selection
Discussion

Accuracy

Contamination Ratio

Precision

Mock Data: King v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Accuracy

Core Radius

Precision

Mock Data: King v1 Contamination

UחED

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Accuracy

Precision

Mock Data: King v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Mode!
Selection
Discussion

Accuracy

Precision

Mock Data: King v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Accuracy

Contamination Ratio

Precision

Real Data: Plummer v1 Contamination

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Posterior distriubutions and their MAP

Real Data: Plummer v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Number Density

Number

Real Data: Plummer v1 Contamination

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Real Data: King v1 Contamination

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data

Real Data

Model
Selection
Discussion

Unnormalized Posteriors and their MAPs

Mode at 0.08 [0.05,0.13]

Real Data: King v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Number Density

Number

Real Data: King v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Real Data: King v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Real Data: King v1 Contamination

Inferring the Spatial
Structure of the Pleiades Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Model Selection: Bayes Factor

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data

Real Data

Model
Selection

Use evidence to select appropriate model,

$$
K_{12}=\frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{2}\right)}=\frac{\int P\left(D \mid \theta_{1}, I\right) P\left(\theta_{1} \mid I\right) d \theta_{1}}{\int P\left(D \mid \theta_{2}, I\right) P\left(\theta_{2} \mid I\right) d \theta_{2}}=\frac{Z_{1}}{Z_{2}}
$$

Approximate Z by HMA (Newton and Raftery, 1994),

$$
Z_{H M A}=\left(\frac{1}{m} \sum_{i}^{m} p\left(D \mid \theta^{i}\right)^{-1}\right)^{-1}
$$

Model Selection: Evidence

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data

Real Data

Model
Selection
Discussion

Table: $\log Z_{\text {HMA }}$. Plummer Models with varying $R_{\max }$

Model	3°	4°	5°	6°
v_{0}	0.56	-1.29	-1.77	-1.95
$v_{0} \mathrm{Cr}$	-0.91	-1.44	-1.35	-0.57
v_{1}	0.30	0.57	-0.21	0.28
$v_{1} \mathrm{Cr}$	0.87	0.54	0.38	0.28

Model Selection: Evidence

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data

Real Data

Model
Selection
Discussion

Table: $\log Z_{\text {HMA }}$. King Models with varying $R_{\text {max }}$

Model	3°	4°	5°	6°
v_{0}	-0.18	-1.86	-1.43	-2.03
$v_{0} \mathrm{Cr}$	0.82	-1.55	-1.52	-1.11
v_{1}	-0.91	-1.44	-1.35	-0.57
$v_{1} \mathrm{Cr}$	0.87	0.57	0.38	0.23

Pinfield's et al. values

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data
Real Data
Model
Selection
Discussion

Using the distance to the Pleiades (136.2 pc, Melis et al. 2014)

Table: King v1 cr [68 \% interval]

Parameter	6°

$r_{c} 0[\mathrm{pc}] \quad 1.84$ [1.75-2.15]
$r_{c 1}[\mathrm{pc} / \lambda] \quad 0.02[0.0-0.05]$
$r_{t}[\mathrm{pc}] \quad 24.6[22.4-27.9]$
cr $\quad 0.08$ [0.05,0.13]

Bin $\left(M_{\odot}\right)$	$r_{\text {c }}(\mathrm{pc})$	$\begin{gathered} r_{\mathrm{c}} \text { limits } \\ (68 \text { per cent confidence) } \end{gathered}$	k	k limits (68 per cent confidence)	n	Mass
1	0.91	[0.50-1.51]	1.86	[0.87-3.74]	13	66
2	1.38	[1.15-1.66]	10.04	[7.86-12.69]	115	190
3	2.22	[1.98-2.49]	15.90	[14.17-17.81]	300	249
4	2.91	[2.63-3.23]	32.81	[30.51-35.37]	766	230

Figure: Pinfiled's values

Inferring the Spatial
Structure of the Pleiades

Olivares, J.

Methodology
Mock Data
Real Data
Mode!
Selection
Discussion

- Estimate de Credibility intervals.

■ Determina the false positive rate of lambda segregation.
■ Infer the number of stars.

- Try different Profiles (e.g. Elson, Fall \& Freeman, 1987)

