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Motivation (I)

> Study of robust M-estimators for hyperspectral applications.
> One year posdoc in GIPSA-lab with Prof. Jocelyn Chanussot

(DGA contract).
> Collaboration with :

• Prof. Jean-Philippe Ovarlez (ONERA).
• Prof. Frederic Pascal (SONDRA/Supelec).
• Ph.D. Student Joana Frontera-Pons (SONDRA/Supelec).
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Motivation (II)

> Multi Unit Spectroscopic Explorer (MUSE) synthetic data→
http ://muse.univ-lyon1.fr.

> Goal : detection of galaxies by means of robust anomaly
detectors.

> Proposals :
• Statistical : robust M-estimators.
• Computational : binary partition trees.
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Outline

1 Hyperspectral anomaly detectors (AD)
Hyperspectral data
Hyperspectral Adaptive RX AD
Issues and proposals

2 Robust estimation
Elliptical distributions
Fixed Point (FP) estimator

3 Experiments with the MUSE dataset
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Hyperspectral imagery

FIGURE : Hyperspectral cube.

> Optical data.
> Hundreds of contiguous high-resolution spectral bands.
> Physical quantities : radiance, reflectance.
> High-dimensionality and high between-bands

correlation.
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Hyperspectral imagery
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Anomaly detectors (I)

> Goal : locate objects in the image that are anomalous
with respect to the background.

> Statistical target detection is based on the Neyman-Pearson
(NP) criterion→ maximize the probability of detection for a
given probability of false alarm.

> Very arbitrary definition→ they cannot distinguish between
true targets and detections of bright pixels of the background
or targets that are not of interest.

> This fact makes extremely difficult to define a false alarm
rate for the anomaly detectors.
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Anomaly detectors (II)

> Anomalies are defined with reference to a model of the
background.

> Most of AD methods rely on the classical Gaussian
distribution assumption and need for the statistical
characterization of the background.

> Adaptive AD→ estimate the background statistics using
reference (a.k.a. secondary) data :
• Using all pixels in the image.
• Using a local neighbourhood around the observation vector.
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Adaptive RX AD (I)

> Considered the baseline AD for hyperspectral data.
> The RX AD was derived from the Generalized Likelihood

Ratio Test (GLRT) assuming Gaussian hypothesis [1].{
H0 : y = b

H1 : y = s + b
, (1)

where b represents the background and s denotes the
presence of an anomalous signal.

[1] I. Reed and X. Yu, "Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution,"

Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 38, no. 10, pp. 1760-1770, 1990.
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Adaptive RX AD (II)

> Statistical characterization of the background :

b ∼ N (µ,Σ) . (2)

> Sample estimation of the statistical parameters using
secondary data, y1, . . . ,yL :

µ̂SMV =
1

L

L∑
l=1

yl, (3)

Σ̂SCM =
1

L

L∑
l=1

(yl − µ̂SMV) (yl − µ̂SMV)T . (4)
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Adaptive RX AD (III)

> GLRT solution to the Adaptive RX AD :

ΛARX = (yl − µ̂SMV)T Σ̂
−1
SCM (yl − µ̂SMV)

H1

≷
H0

λ. (5)

> Assuming the null hypothesis is correct :

L−m+ 1

mL
ΛARX ∼ Fm,L−m+1. (6)

> For high values of L, (L > 10m), it can be approximated by a
χ2-distribution.
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Background distribution

> The actual distribution of the background pixels differs from
the theoretically predicted under Gaussian hypothesis.

> The empirical distribution usually has heavier tails compared
to the Gaussian distribution [2].

> These tails strongly influence the observed false-alarm rate
of the detector.

> Proposal : characterize the background statistics by the
class of Elliptical distributions.

[2] D. Manolakis and D. Marden, "Non gaussian models for hyperspectral algorithm design and assessment," in

Geoscience and Remote Sensing Symposium, 2002. IGARSS’02. 2002 IEEE International, vol. 3. IEEE, 2002, pp.

1664-1666.
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Statistical estimators

> the classical Gaussian-based estimators do not provide
optimal performance due to heavy tails.

> Proposal : Fixed Point (FP) robust estimators (also
known as Tyler’s estimators [3]).

> FP estimates can be used as plug-in estimators in place of
the unknowns mean vector and covariance matrix in the
detection scheme.

> Simple but often efficient method to obtain robust properties
for signal processors derived under the Gaussian
assumption.

[3] D. Tyler, "A distribution-free m-estimator of multivariate scatter," The Annals of Statistics, vol. 15, no. 1, pp. 234-251,
1987.
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Secondary data (I)

> Conventional approach : using sliding windows.

FIGURE : Selection of the secondary data by means of sliding windows.

> Outer window (blue) : delimits the pixels used as secondary
data.

> Guard window (red) : prevents possible anomalous pixels to
be selected as secondary data.
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Secondary data (II)

> Local strategy provides more realistic scenario for the
background characterization, but :
• It can be sensitive to the presence of false alarms due to

isolated anomalies.
• Background should be uni-modal.

> Need of a size trade-off :
• Increasing size : higher number of secondary data.
• Decreasing size : less risk of including isolated anomalies

and/or mixed distributions.
> Proposal : define the secondary data using binary

partition trees.
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Elliptical distributions (I)

> Hyperspectral data have been proven not to be
multivariate normal but long tailed distributed.

> The class of elliptical distributions is considered to describe
clutter statistical behavior.

> The family of elliptical distributions includes a large number
of distributions, notably the Gaussian distribution,
multivariate t-distribution, K-distribution or multivariate
Cauchy.
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Elliptical distributions (II)

> Formalization of the elliptical distribution :

fX (x) = cm,h |Σ|−
1
2 hm

(
1

2
(x− µ)T Σ−1 (x− µ)

)
, (7)

> cm,h is a normalization constant.
> hm (·) is any function (density generator ) such that fX (x)

defines a p.d.f.→ assumed to be only approximately known.
> Σ is a positive semi-definite matrix called scatter matrix.
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Elliptical distributions (III)

> Remark that fX (x) depends on x only through the quadratic
form (x− µ)T Σ−1 (x− µ).

> Thus, the level sets of the density are ellipsoids in the
Euclidean m-space.

> If the second-order moment exists, then Σ reflects the
structure of the covariance matrix of the elliptically
distributed random vector x, i.e. the covariance matrix is
equal to the scatter matrix up to a scalar constant.

> Then, it serves to characterize the correlation structure
existing within the spectral bands.
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FP estimator (I)

> The FP estimates have been widely investigated in statistics
and signal processing literature.

> These estimators belong to the wider class of robust
M -estimators.

> ΣFP and ΣSCM have the same asymptotic Gaussian
distribution which differs on their second order moment
by a factor of m+1

m L.
> For L sufficiently large, ΣFP behaves as a Wishart matrix

with m+1
m degrees of freedom.
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FP estimator (II)

> FP estimates :

µ̂FP =

∑L
l=1

xi(
(xi−µ̂FP)

T Σ̂
−1
FP (xi−µ̂FP)

)1/2∑L
l=1

1(
(xi−µ̂FP)

T Σ̂
−1
FP (xi−µ̂FP)

)1/2

(8)

Σ̂FP =
m

L

L∑
l=1

(xi − µ̂FP) (xi − µ̂FP)T(
(xi − µ̂FP)T Σ̂

−1
FP (xi − µ̂FP)

) (9)

> Alternate iterative process.
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MUSE sensor

> The Multi Unit Spectroscopic Explorer (MUSE) project aims
to provide astronomers with a new generation of optical
instrument, capable of simultaneously imaging the sky (in
2D) and measuring the optical spectra of the light received at
a given position on the sky.

> MUSE was installed on the VLT telescope and operational in
2013, and its performances are expected to allow
observation of far galaxies up to 100 times fainter than those
presently detectable.
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MUSE datasets

> MUSE will deliver a 3D data-cube made of a stack of images
recorded at 3578 different wavelengths over the range
465− 930 nm.

> Each monochromatic image represents a field of view of
60× 60 arcsec, recorded with a spatial sampling of 0.2
arcsec.

> Each record results in a data cube of size 1570 MB encoding
3578 images of 300× 300 pixels, possibly containing
thousands of objects (galaxies) existing over different
subsets of wavelengths.
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Available MUSE synthetic dataset
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Results

> From the 3578 available bands, we have chosen one band of
each 100.

> The results for anomaly detection are presented for a fixed
probability of false alarm, PFA = 10−3.

> Note that detection with FP estimators provides results with
lower false alarm rate than classical ones.

M.A. Veganzones et al. MUSE - Robust Hyperspectral AD 27 / 30



Outline
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Summary

> Hyperspectral AD are usually based on Gaussian
assumptions→ not realistic (heavy tailed distributions).

> Conventional SMV and SCM estimators are not optimal with
heavy tailed distributions.

> Proposal : use FP estimators→ they work as plug-in
estimators.

> Experimental results with MUSE synthetic data→ galaxy
detection.
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