An optimization problem with a N-parameters emission model

Thomas Vuillaume, Rencontres d'Astrostatistique 2014

Evolution of 3C279

Apparent superluminal motion requires relativistic speeds \Rightarrow high Γ

Apparent superluminal motion requires relativistic speeds \Rightarrow high Γ

Very high energy photons require very high energy particles to be produced \Rightarrow high γ

Application to AGN jets: full model

3C273 SED

SED modeling

3C273 SED

5e4	<pre># D_torus/Rg = distance of the torus center</pre>
4.5e4	<pre># R_torus/Rg = torus radius</pre>
1.	# emissivity Torus (GreyBody)
2e3	<pre># R_blr/Rg = BLR radius</pre>
0.01	# cos(omega_min) BLR
0.8	# cos(omega_max) BLR
0.06	# emissivity BLR (Grey Body)
2e-5	# eps_blr.
1.	# gam_min — inutile pour pile-up
1e6	# gam_max – inutile pour pile-up

 $R_0 \\ Z_0 \\ Z_c \\ B_0$ Q_0 N_0 $0 < \omega < 1$ $1 < \lambda < 2$ ζ

$$R = R_0 \left(\frac{Z}{Z_0}\right)^{\omega}$$
$$Q = Q_0 \left(\frac{Z}{Z_0}\right)^{\zeta} \exp\left(-\frac{Z}{Z_c}\right)$$

Particle heating

Jet radius

 $-\omega\lambda$ $B = B_0 \left(\frac{Z}{Z_0}\right)$

Magnetic field

• Energy conservation:

$$\dot{\gamma} = \delta\left(\Gamma\right) \left[Q - \left(U_{syn} + U_{ssc} + U_{ec}\right)\left(\gamma^2 - 1\right)\right] \\ \propto \delta(\Gamma) \left[Q - \left(\gamma^2 B + N\frac{\gamma^4 B^2}{R^2} + N\frac{\gamma^2}{Z^2}\right)\left(\gamma^2 - 1\right)\right]$$

• *Particle flux conservation:*

$$\frac{\partial}{\partial t}(N\Gamma R^2) + c\frac{\partial}{\partial Z}(N\Gamma R^2) = R^2 \dot{N}$$

Least square reduction problem

 $\chi^2 = \sum_i \frac{(X_i - y_i)^2}{\sigma_i^2}$

Hand

Genetic Algorithm

3C273 SED

v(Hz)