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Hyperspectral data

300 pixels

300 pixels

3600 wavelengths

MUSE data collected by 24 3D spectrographs combined with one of the four

telescopes of VLT (Chile).

� 2 [480 nm, 930 nm]
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Typical observed galaxies
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Main challenge

Objects of interest: small and faint galaxies with a spectrum composed of one
emission line (Lyman-alpha emitters).
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spectrum without noise

Approximation: Lyman-alpha emmiters ' 3D point sources.

Observation: Low signal-to-noise ratio (SNR) .

Objective: Find possible positions of Lyman-alpha emitters in the 3D datacube.
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Faint galaxies detection

Objective: detect and estimate objects whose position, number, shape, intensity and
spectrum are unknown.

Challenges:

! Detection of the smallest and faintest galaxies.

! Large dynamics between galaxies intensity.

! Control of the error

Proposed approach:

! Galaxies configuration = a realization of a marked point process.

! Observation model and Bayesian approach.
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Galaxies configuration
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One object:
- geometrical marks
- spectral mark
- intensity mark

An object configuration = a realization
of a marked point process (MPP)

8 / 32



Introduction Problem formulation Detection method Errors control Application Conclusion

Observation model

Global observation model:

Y = Xw + ✏ (1) where Y = [Y1, · · · ,Y⇤]
X = [x1, · · · , xn]
w = [w1, · · · ,wn]
✏ = [✏1, · · · , ✏⇤]
⇤ = wavelengths number
n = number of detected objects

and for all � :

Y � = Xw� + ✏�

with:

(H1) ✏� = vector of spatially independent Gaussian variables ⇠ N (m�,�2
�).

(H2) The ✏� are spectrally independent.

(H3) X includes FSF information (averaged on � ! X is �-invariant).

(H4) LSF is not directly included in the observation model.
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Bayesian approach

! From (H2) and eq. (1) the global likelihood f (Y |X ,w ,m,�2) of the data can be
computed.

! Priors on X ,w ,m, and �2 can be added1.

! From Bayes approach, the joint posterior density can be written:

p(X ,w ,m,�2|Y ) / f (Y |X ,w ,m,�2)
| {z }

data fidelity term

p(m,�2)p(w |X )p(X )
| {z }

priors

! Estimation of X ,w ,m, and �2 ! maximization of the posterior density.

1C. Meillier et al. (2014). “Non-parametric Bayesian framework for detection of object configurations with large
intensity dynamics in highly noisy hyperspectral data”. In: 2014 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP)
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Detection and estimation algorithm

! Posterior density too complex to be analytically used.

! Reversible Jump Markov Chain Monte Carlo:

• Gibbs sampler2 for parameters m and �2.
• Metropolis-Hastings-Green sampler3 for configuration X .

! RJMCMC : method that generates samples whose density is close to the posterior.

DATACUBE Detection OBJECT CONFIGURATION

2S. Geman and D. Geman (1984). “Stochastic Relaxation, Gibbs Distribution and Bayesian Restoration of
Images”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

3P.J. Green (1995). “Reversible Jump Markov chain Monte Carlo computation and Bayesian model
determination”. In: Biometrika 52
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Detection and estimation algorithm

! Initialization: empty configuration, empirical mean and variance of the data.

! At each iteration:

CURRENT
STATE

X , m, �2

OR

NEW REALIZATION
OF THE MPP

X⇤, m, �2

OR

SAMPLING
PARAMETERS X , m⇤, �2⇤

NEW
STATE

X⇤, m⇤, �2⇤

! Maximum a posteriori estimation
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Advantages and limitations of the methods

DATACUBE Detection OBJECT CONFIGURATION

+ Nonparametric method : detection and estimation.

+ Both the configuration and the background parameters are estimated.

+ The estimation is fully data-driven.

� Computational time increases in O(n2).

� Errors control ?
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Problem formulation

Limitations of the detection procedure:

� Computational time increases in O(n2).

� Errors control ?

Proposed solution:

! Preprocess the data

! Multiple hypotheses testing procedures

+ Reduce the exploration space by the MPP.

+ Introduce an error control criterion in the algorithm.

� Number of tests
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Problem formulation

Objects of interest: small and faint galaxies with a spectrum composed of one
emission line (Lyman-alpha emitters).
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Approximation: Lyman-alpha emmiters ' 3D point sources.

Approximation: Lyman-alpha response ! close to the 3D PSF.

Objective: Find possible positions of Lyman-alpha emitters in the 3D datacube.

! Multiple hypotheses testing
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Multiple hypotheses testing procedures

! N = N0 + N1 tests, with N0 true H0 and N1 true H1

XXXXXXXXTruth
Decision cH0 cH1

H0 N0 - a a
(Type I errors)

H1 N1 - b b

! False alarms control :

Pr(cH1|H0) 6 ↵ ! a ' N⇥↵

! False detections control :

a

a+ b
6 ↵

! Family-Wise Error Rate (FWER) ! the probability of at least one type I error:

FWER = Pr(a > 1)

! False Discovery Rate (FDR) ! expected proportion of Type I errors among the
rejected hypotheses:

FDR = E

✓
a

a+ b

���a+ b > 0

◆
Pr (a+ b > 0)
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Controlling the FDR via knocko↵s filter 4

Objective: Find relevant variables and control FDR

Linear Gaussian model:

Y = X� + ✏ where Y 2 Rn

X 2 Rn⇥p

� 2 Rp

✏ ⇠ N (0, In)

Knocko↵s filter:

1. Construct the knocko↵ eXj for each feature Xj such as:

• eXT eX = XTX
• eXT

j Xk = XT
j Xk for all j 6= k.

2. Calculate statistics for each pair (Xj , eXj )

3. Calculate data-dependant threshold for the statistics

Control of the FDR

4Rina Foygel Barber and Emmanuel Candes (2014). “Controlling the False Discovery Rate via Knocko↵s”. In:
arXiv preprint arXiv:1404.5609
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Controlling the FDR via knocko↵s filter - Application to the galaxies
detection

Objective: Find possible positions of Lyman-alpha emitters in the 3D datacube.

Variables: Each position (x , y ,�) should be tested, Xj = PSFx,y,�.

Limitations of the knocko↵s filter on the MUSE data:

� Dimensions p = n = 360⇥ 106.

� Building the knocko↵s (respecting the 3D correlations).
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Max-test

! Highlight the small galaxies with a spectrum composed of a few distinct
emission lines.

,! Their response should be close to the PSF.

,! Matched filter with the 3D PSF.

! Define the intensity of the marked point process

Structure of the preprocessing step:

DATACUBE

PSF

Y�(r)

Matched Filter
Y f
�(r)

Max-test
PROPOSITION MAP

INTENSITY OF MPP
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Max-test
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Binary hypothesis test:
⇢

H0: noise only

H1: presence of an object

Max-test:

max
�

(Y f
�(r))

H0
7
H1

⌘(pFA),

Max-test statistics known under H0

(Monte Carlo simulations).

Note: this test can also be obtained by
writing the GLRT5.

5Silvia Paris et al. (2013). “Constrained likelihood ratios for detecting sparse signals in highly noisy 3D data”.
In: International Conference on Acoustics, Speech and Signal Processing
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Max-test
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Max-test
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! Proposition map
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Higher Criticism5

! For i = 1, . . . , n consider n independent tests:

⇢
H0,i : Xi ⇠ N (0, 1)
H1,i : Xi ⇠ N (µi , 1) with µi > 0

with a small proportion ✏ of the Xi such as µi > 0.

,! Asymptotically optimal
,! MUSE application: model adapted to the Lyman alpha emitters.

! Let p(1) 6 ... 6 pN be the n sorted p-values and compute the HC⇤ statistic:

HC⇤ = max
0<i6↵0⇥n

p
n( i

n
� p(i))q

p(i)(1� p(i))

! Reject H0,(1), ..., H0,(imax�1)

Application on the matched filtered result ! How to control false alarms for
dependent tests ?

5David Donoho and Jiashun Jin (2004). “Higher Criticism for detecting sparse heterogeneous mixtures”. In:
Annals of Statistics
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Performances

Detection performances on synthetic images:
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Application to DATACUBE-HDFS-v031c

DATACUBE PREPROCESSING
PROPOSITION

MAP

P
�

WHITE DATA PREPROCESSING CATALOG

INITIALIZATION DETECTION CATALOG
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Conclusion and perspective

! Nonparametric method for galaxy detection

! Preprocessing step for error control:
• Pixel-wise false alarm control
• FDR under propoerty of positive regression dependancy on a subset I0

6 ! matched
filtered data PRDS.

! Good results on the real data

Future work:

! Analyze the objects which are not in the HDFS-catalog to identify potential new
discoveries.

! Empiric FDR control in the catalog produced by the method.

6Yoav Benjamini and Daniel Yekutieli (2001). “The control of the false discovery rate in multiple testing under
dependency”. In: Annals of statistics
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