Detecting galaxies by marked point process in a Bayesian framework : how to control detection errors ?

Céline Meillier

14 November 2014

PhD supervisors: Florent CHATELAIN, Olivier MICHEL, Hacheme AYASSO

MUSE data collected by 24 3D spectrographs combined with one of the four telescopes of VLT (Chile).

Introduction			Application	
T · I I	 0000	00000000	00000	

Typical observed galaxies

Introduction					
	00	0000	00000000	00000	
Main chall	enge				

Objects of interest: small and faint galaxies with a spectrum composed of one emission line (Lyman-alpha emitters).

Approximation: Lyman-alpha emmitters \simeq 3D point sources.

Observation: Low signal-to-noise ratio (SNR) .

Objective: Find possible positions of Lyman-alpha emitters in the 3D datacube.

Introduction					
	00	0000	00000000	00000	
Faint gala	axies detection				

Objective: detect and estimate objects whose position, number, shape, intensity and spectrum are unknown.

Challenges:

- $\rightarrow\,$ Detection of the smallest and faintest galaxies.
- \rightarrow Large dynamics between galaxies intensity.
- \rightarrow Control of the error

Proposed approach:

- \rightarrow Galaxies configuration = a realization of a marked point process.
- $\rightarrow\,$ Observation model and Bayesian approach.

Introduction	Problem formulation	Detection method 0000	Errors control 000000000	Application 00000	
Outlines					

Problem formulation Galaxies configuration Observation model

Detection method

Bayesian approach Sampling algorithm

Errors control

Problem formulation Multiple hypotheses testing

Application

Detection algorithm applied to the MUSE data

	Problem formulation	Detection method	Errors control 000000000	Application 00000	

Problem formulation

Galaxies configuration Observation model

Detection method

Errors control

Application

	Problem formulation				
	00	0000	00000000	00000	
Observation	model				

Global observation model:

$$\begin{aligned} \mathbf{Y} &= \mathbf{X}\mathbf{w} + \mathbf{\epsilon} \qquad (1) \qquad \text{where} \qquad \begin{aligned} \mathbf{Y} &= & [Y_1, \cdots, Y_\Lambda] \\ \mathbf{X} &= & [x_1, \cdots, x_n] \\ \mathbf{w} &= & [w_1, \cdots, w_n] \\ \mathbf{\epsilon} &= & [\epsilon_1, \cdots, \epsilon_\Lambda] \\ \Lambda &= & \text{wavelengths number} \\ n &= & \text{number of detected objects} \end{aligned}$$

and for all λ :

$$\boldsymbol{Y}_{\lambda} = \boldsymbol{X} \boldsymbol{w}_{\lambda} + \epsilon_{\lambda}$$

with:

- (H1) $\epsilon_{\lambda} =$ vector of spatially independent Gaussian variables $\sim \mathcal{N}(m_{\lambda}, \sigma_{\lambda}^2)$.
- (H2) The ϵ_{λ} are spectrally independent.
- (H3) **X** includes FSF information (averaged on $\lambda \rightarrow \mathbf{X}$ is λ -invariant).
- (H4) LSF is not directly included in the observation model.

		Detection method			
	00	0000	00000000	00000	
Outlines					

Problem formulation

Detection method Bayesian approach Sampling algorithm

Errors control

Application

		Detection method			
	00	0000	00000000	00000	
Bayesian	approach				

- → From (H2) and eq. (1) the global likelihood $f(\mathbf{Y}|\mathbf{X}, \mathbf{w}, \mathbf{m}, \sigma^2)$ of the data can be computed.
- \rightarrow Priors on **X**, **w**, **m**, and σ^2 can be added¹.

 \rightarrow From Bayes approach, the joint posterior density can be written:

$$p(\mathbf{X}, \mathbf{w}, \mathbf{m}, \sigma^2 | \mathbf{Y}) \propto \underbrace{f(\mathbf{Y} | \mathbf{X}, \mathbf{w}, \mathbf{m}, \sigma^2)}_{\text{data fidelity term}} \underbrace{p(\mathbf{m}, \sigma^2) p(\mathbf{w} | \mathbf{X}) p(\mathbf{X})}_{\text{priors}}$$

ightarrow Estimation of $\pmb{X}, \pmb{w}, \pmb{m}$, and $\sigma^2
ightarrow$ maximization of the posterior density.

¹C. Meillier et al. (2014). "Non-parametric Bayesian framework for detection of object configurations with large intensity dynamics in highly noisy hyperspectral data". In: 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)

		Detection method			
	00	0000	00000000	00000	
Detection	and estimation a	algorithm			

 $\rightarrow\,$ Posterior density too complex to be analytically used.

- → Reversible Jump Markov Chain Monte Carlo:
 - Gibbs sampler² for parameters m and σ^2 .
 - Metropolis-Hastings-Green sampler³ for configuration **X**.

 $\rightarrow\,$ RJMCMC : method that generates samples whose density is close to the posterior.

²S. Geman and D. Geman (1984). "Stochastic Relaxation, Gibbs Distribution and Bayesian Restoration of Images". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence*

³P.J. Green (1995). "Reversible Jump Markov chain Monte Carlo computation and Bayesian model determination". In: *Biometrika* 52

Introduction Pro		Detection method			
	00	0000	00000000	00000	i .
D 1					,

Detection and estimation algorithm

- \rightarrow Initialization: empty configuration, empirical mean and variance of the data.
- \rightarrow At each iteration:

 \rightarrow Maximum a posteriori estimation

- + Nonparametric method : detection and estimation.
- + Both the configuration and the background parameters are estimated.
- + The estimation is fully data-driven.
- Computational time increases in $\mathcal{O}(n^2)$.
- Errors control ?

			Errors control		
	00	0000	00000000	00000	
Outlines					

Problem formulation

Detection method

Errors control Problem formulation Multiple hypotheses testing

Application

			Errors control		
	00	0000	• 0 0000000	00000	
Problem	formulation				

Limitations of the detection procedure:

- Computational time increases in $\mathcal{O}(n^2)$.
- Errors control ?

Proposed solution:

- \rightarrow Preprocess the data
- $\rightarrow\,$ Multiple hypotheses testing procedures
- + Reduce the exploration space by the MPP.
- + Introduce an error control criterion in the algorithm.
- Number of tests

			Errors control		
	00	0000	00000000	00000	
Problem	formulation				

Objects of interest: small and faint galaxies with a spectrum composed of one emission line (Lyman-alpha emitters).

Approximation: Lyman-alpha emmiters \simeq 3D point sources.

Lyman-alpha response \rightarrow close to the 3D PSF.

Objective: Find possible positions of Lyman-alpha emitters in the 3D datacube.

 \rightarrow Multiple hypotheses testing

		Errors control	Application 00000	
	00			

Multiple hypotheses testing procedures

 $\rightarrow~N=\textit{N}_{0}+\textit{N}_{1}$ tests, with \textit{N}_{0} true \mathcal{H}_{0} and \textit{N}_{1} true \mathcal{H}_{1}

Decision Truth	$\widehat{\mathcal{H}_0}$	$\widehat{\mathcal{H}_1}$
\mathcal{H}_0	N ₀ - a	a (Type I errors)
\mathcal{H}_1	<i>N</i> ₁ - b	b

→ False alarms control : $Pr(\widehat{\mathcal{H}}_1|\mathcal{H}_0) \leq \alpha \rightarrow a \simeq N \times \alpha$ → False detections control : $\frac{a}{a+b} \leq \alpha$

 \rightarrow Family-Wise Error Rate (FWER) \rightarrow the probability of at least one type I error:

$$FWER = \Pr(a \ge 1)$$

 \rightarrow False Discovery Rate (FDR) \rightarrow expected proportion of Type I errors among the rejected hypotheses:

$$FDR = E\left(\frac{a}{a+b}\Big|a+b>0\right) \Pr(a+b>0)$$

	Problem formulation	Detection method 0000	Errors control	Application 00000	
C		1 66 611 4			

Controlling the FDR via knockoffs filter

Objective: Find relevant variables and control FDR

Linear Gaussian model:

 $egin{aligned} \mathbf{Y} &= \mathbf{X}eta \ + \ \epsilon \end{aligned} ext{where} egin{aligned} &\mathbf{Y} &\in & \mathbb{R}^n \ &\mathbf{X} &\in & \mathbb{R}^{n imes p} \ &eta &\in & \mathbb{R}^p \ &eta &\sim & \mathcal{N}(\mathbf{0},\mathbf{I}_n) \end{aligned}$

Knockoffs filter:

- 1. Construct the knockoff \widetilde{X}_j for each feature X_j such as:
 - $\widetilde{X}^T \widetilde{X} = X^T X$ • $\widetilde{X}_i^T X_k = X_i^T X_k$ for all $j \neq k$.
- 2. Calculate statistics for each pair (X_j, \tilde{X}_j)
- 3. Calculate data-dependant threshold for the statistics

Control of the FDR

⁴Rina Foygel Barber and Emmanuel Candes (2014). "Controlling the False Discovery Rate via Knockoffs". In: arXiv preprint arXiv:1404.5609

Objective: Find possible positions of Lyman-alpha emitters in the 3D datacube.

Variables: Each position (x, y, λ) should be tested, $X_j = PSF_{x,y,\lambda}$.

Limitations of the knockoffs filter on the MUSE data:

- Dimensions $p = n = 360 \times 10^6$.
- Building the knockoffs (respecting the 3D correlations).

			Errors control		
	00	0000	00000000	00000	
Max-test					

→ Highlight the small galaxies with a spectrum composed of a few distinct emission lines.

 \hookrightarrow Their response should be close to the PSF.

 \hookrightarrow Matched filter with the 3D PSF.

 \rightarrow Define the intensity of the marked point process

Structure of the preprocessing step:

			Errors control		
	00	0000	000000000	00000	
Max-test					

Binary hypothesis test:

 $\left\{ \begin{array}{l} \mathcal{H}_0: \text{ noise only} \\ \mathcal{H}_1: \text{ presence of an object} \end{array} \right.$

Max-test:

$$\max_{\lambda}(\boldsymbol{Y}^{f}_{\lambda}(r)) \overset{\mathcal{H}_{0}}{\underset{\mathcal{H}_{1}}{\underset{\mathcal{H}_{1}}{\overset{\mathcal{H}_{0}}{\underset{\mathcal{H}_{1}}{\underset{\mathcal{H}_{1}}{\overset{\mathcal{H}_{0}}{\underset{\mathcal{H}_{1}}{\underset{1}}$$

 $\begin{array}{l} \text{Max-test statistics known under } \mathcal{H}_0 \\ \text{(Monte Carlo simulations).} \end{array}$

Note: this test can also be obtained by writing the $GLRT^5$.

⁵Silvia Paris et al. (2013). "Constrained likelihood ratios for detecting sparse signals in highly noisy 3D data". In: International Conference on Acoustics, Speech and Signal Processing

		Errors control ○○○○○○●○○	Application 00000	
Max-test				

0.01%

Segmentation of the 2D image for different false alarm probabilities (p_{FA})

	Problem formulation 00	Detection method 0000	Errors control	Application 00000	
Max-test					

Segmentation of the 2D image for a given false alarm probabilities (p_{FA})

→ Proposition map

			Errors control		
	00	0000	000000000	00000	
Higher Cr	riticism ⁵				

 \rightarrow For $i = 1, \dots, n$ consider *n* independent tests:

$$\left\{ egin{array}{ll} \mathcal{H}_{0,i}: & X_i \sim \mathcal{N}(0,1) \ \mathcal{H}_{1,i}: & X_i \sim \mathcal{N}(\mu_i,1) & ext{ with } \mu_i > 0 \end{array}
ight.$$

with a small proportion ϵ of the X_i such as $\mu_i > 0$.

→ Asymptotically optimal
 → MUSE application: model adapted to the Lyman alpha emitters.

 \rightarrow Let $p_{(1)} \leqslant ... \leqslant p_N$ be the *n* sorted p-values and compute the HC^* statistic:

$$HC^* = \max_{0 < i \leq \alpha_0 \times n} \frac{\sqrt{n}(\frac{i}{n} - p_{(i)})}{\sqrt{p_{(i)}(1 - p_{(i)})}}$$

$$\rightarrow$$
 Reject $\mathcal{H}_{0,(1)}, ..., \mathcal{H}_{0,(i_{max}-1)}$

Application on the matched filtered result \rightarrow How to control false alarms for dependent tests ?

⁵David Donoho and Jiashun Jin (2004). "Higher Criticism for detecting sparse heterogeneous mixtures". In: Annals of Statistics

			Errors control		
	00	0000	00000000	00000	
Performa	nces				

Detection performances on synthetic images:

				Application	
	00	0000	00000000	00000	
Outlines					

Problem formulation

Detection method

Errors control

Application Detection algorithm applied to the MUSE data

Application to DATACUBE-HDFS-v031c

					Conclusion
	00	0000	00000000	00000	
Outlines					

Problem formulation

Detection method

Errors control

Application

	Problem formulation 00	Detection method 0000	Errors control	Application 00000	Conclusion
Conclusio	n and perspective	9			

- \rightarrow Nonparametric method for galaxy detection
- \rightarrow Preprocessing step for error control:
 - Pixel-wise false alarm control
 - $\bullet\,$ FDR under propoerty of positive regression dependancy on a subset ${l_0}^6 \to$ matched filtered data PRDS.
- \rightarrow Good results on the real data

Future work:

- $\rightarrow\,$ Analyze the objects which are not in the HDFS-catalog to identify potential new discoveries.
- \rightarrow Empiric FDR control in the catalog produced by the method.

⁶Yoav Benjamini and Daniel Yekutieli (2001). "The control of the false discovery rate in multiple testing under dependency". In: *Annals of statistics*